Comprehensive CD4 characterization

of novel and established fluorochromes facilitates data-driven in silico
oanel design and optimization in high-parameter cytometry applications.
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BACKGROUND

Maximizing resolution of cellular subsets of interest through effective panel design is a critical step in flow cytometry assay development.
Recent advancements in fluorochrome chemistry across the industry have given rise to a new wave of high-performance dyes enabling

improved resolution in cytometry applications. To effectively utilize these innovations in high-parameter assays it is important to understand

their interaction with established dyes and their impact on measurement sensitivity in the context of a given panel.

lterative panel optimization experiments are resource intensive and may limit fluorochrome assignments to commercially available reagents,

as custom conjugations can be cost prohibitive in the panel design phase of assay development. Existing open source tools offer some

insights into the expected performance of a proposed panel though metrics such as cosine similarity, stain index reduction, and Complexity
Index™; however, these tools do not allow visualization of potential spillover and unmixing spreading error, nor do they elucidate the effective

resolution of a given measurement in the context of the full panel. To address this gap, we have characterized 125 novel and established

fluorochromes using anti-CD4 conjugated reagents on a 5-laser Cytek Aurora instrument, and built a reference database of emission spectra
and tools to quickly estimate panel performance through computational analysis, generating metrics and visualizations to characterize of the
interaction of a given set of dyes. This, combined careful consideration of antigen density and co-expression, provides critical insights into the

potential sensitivity of all measurements in a proposed panel prior to performing costly and time consuming wet lab experiments.

In this poster we highlight the utility of our in silico approach to panel design through a case study focusing on the modification of our 48-color
Pan-Immune Profiling panel (PIP-01), substituting four recently released Real Blue™ dyes for their corresponding Brilliant Blue™ analogs used in

the original panel configuration.
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IN SILICO PANEL CHARACTERIZATION

proposed panel to assess its potential impact on panel performance.

Characterization of 125 unique CD4~-conjugated fluorochromes

Performed by staining cryopreserved PBMC, employing a mosaic plating strategy to buffer against potential cross contamination between wells

with similar dyes. Commonly used viability dyes were also characterized using heat-killed PBMC (not shown). Single stain CD4 data were acquired
on a S-laser Cytek Aurorq, pre-processed using an automated gating pipeline, and compiled into an internal database. After careful consideration
of antigen density, expected co-expression, and direct conjugate availability for the markers to be measured in the panel, individual CD4 files for
the proposed dyes in the panel are unmixed and concatenated to create a surrogate multi-stain file. Effective Stain Index (ESI), spillover spreading
error, and unmixing artifacts (manifesting as tilted negative spread) are then quantified and incorporated into a suite of panel performance

metrics. Concatenated data may also be visuadlized using N x 1layouts, where any individual dye is plotted against all other fluorochromes in the
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population identified through this metric, and their potential impact on resolution.
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Panel development flywheel

Demonstrates how dye characterization and in silico optimization tools integrate with Ozette's data driven approach to panel

modification and de novo panel development workflows.
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DISCUSSION

Ozette's data-driven approach to panel design enables efficient development of high-parameter cytometry assays through iterative in silico optimization
prior to costly and time consuming wet lab experiments. Our comprehensive spectral database of 125 commercially available fluorochromes is regularly
expanded to include novel dyes as they are released, ensuring the ability to evaluate the potential impact of these reagents in new and existing panels.

Pairing deep technical expertise and an understanding of antigen density and coexpression with panel-specific performance metrics, we are able to
quickly and empirically identify optimal fluorochrome assignments for a given set of markers.

A continuing focus on the improvement of fluorochrome chemistry across the industry will enable larger panels and superior resolution; however, the
characterization of how these dyes may perform in a given panel, whether used for panel improvement or expansion, should not be overlooked. The
ability to gain insight into the impact on effective measurement resolution in silico enables informed decision making before investing resources on an
endeavor that may result in only marginal improvement, or worse, an adverse impact on a critical measurement.

While the data presented here focus on conventional unmixing methodology, we plan to expand this tool set to incorporate Ozette Resolve™ unmixing
workflows to allow direct comparisons and quantify the improved resolution afforded by our novel adaptive method.
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